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beam A, upstream beam 

beam B, downstream beam 

a constant (C = 46/7rD) 

diameter of laser beam; photodetector 

absolute time averaged current supplied to photodetector with knife-edge 
removed 

ac-electrical signal output of photodetector 

similarity function 

cross-correlation function or cross-correlogram of beam A 

sensitivity of laser schlieren beam 

integration time for computation of cross-correlation 

time 

the most probable speed of disturbances averaged over the beam separation 
distance E 

coordinates in direction of flow, perpendicular to flow direction (in horizontal 
plane), and perpendicular to flow direction (in vertical direction), respectively 

Gladstone-Dale constant 

beam deflection vector 

beam separation distance 

air density 

time delay of downstream signal 

angle of rotation of 4 during transit time of disturbance from beam A to B 
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A DIRECT MEASUREMENT OF THE MOST PROBABLE PREFERRED 
ANGULAR VELOCITY OF TURBULENT STRUCTURES BY 

OPTICAL CORRELATION OF LASER 
SCH L I E R EN SI G N A LS 

SUMMARY 

This report presents a method that provides means for separating tlie translational and rotational 
motion of turbulent structures. Simple two-dimensional models are used to relate the skewness of 
cross-correlograms computed from laser schlieren signals to the rotation of flow disturbances. The 
method, referred to herein as the method of “forced similarity,” is discussed with respect to application 
to the turbulent free shear layer of an axisynimetric supersonic jet. Experimental results show that the 
shape of the cross-correlogram in the neighborhood of the “peak” is strongly influenced by rotational 
motion, and, therefore, it becomes necessary to account for the effect to determine the correct 
statistical properties of the turbulence. 

INTRODUCTION 

This report contains the author’s preliminary thoughts on tlie possibility of making direct 
measurements of tlie most probable preferred angular velocity at “localized” regions within turbulent 
flows by optical correlations of laser schlieren signals [ 11 . Although some experinlental results are 
presented which satisfy certain necessary conditions required of the proposed theory, sufficient data 
verifying the theory do not exist. However, plans have been made to obtain these data in Marshall 
Space Flight Center’s Cold Flow Thermal and Acoustic Jet Facility. 

During the feasibility test presented in Reference 1,  there were unexplained variations in the 
shape of the cross-correlograms computed from laser schlieren signals retrieved from the supersonic 
turbulent boundary layer on a thin plate. In April 1968, near the conclusion of this test, the connection 
between the skewness of the cross-correlograms and the angular rotation of the disturbances was 
considered. 

Preliminary experimental results eventually led to a method for separating rotational and 
translational contributions to tlie computed cross-correlograms. TIUS method is referred to herein as 
the method of “forced similarity.” The “forced similarity” condition provides the means for direct 
measurement of the most probable preferred’ angular velocity of the turbulent structures2 at localized 

1. The word “preferred” is used since the statistical process does not yield the angular velocity com- 
ponents based upon statistical averages of absolute values. 

2. Throughout this report reference is made to “turbulent structures” and “disturbances” to distinguish 
between the motion of the density gradient and tlie motion of fluid particles which represent an 
“eddy” at a particular instant. The laser schlieren signals are produced by the fluctuating density 
gradient component perpendicular to the path of tlie beam [2]. 
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regions inside turbulent flows. The potential extension of the method to yield the probability distribution 
of the angular velocity and measurements of vorticity are very interesting, and may result as a natural 
consecmence of the development of the laser schlieren system. 

THE LASER SCHLIEREN OPTICAL REMOTE SENSING SYSTEM 

For simplicity, consider the model of a laser schlieren optical remote sensing system [ 13 shown 
in Figure 1 where two laser beams of light are directed through the test section of a wind tunnel. The 
parallel beams are perpendicular to the flow and are separated by a distance t .  The plane formed by the 
beams is such that flow disturbances passing through the upstream beam (beam A) at time t ,  also pass 
through the downstream beam (beam B) at a later time t + 7. A knife-edge is positioned perpendicular 
to each of the beams such that 50 percent of the light is prevented from reaching the respective photo- 
detectors when the beams are undisturbed. 

Reference 2 shows that a disturbance characterized by a local gradient of the index of refraction 
will deflect each of these beams as it passes through them. Each deflection is proportional to the com- 
ponent of the gradient that is perpendicular to the path of the beam. When a deflection occurs, the 
amount of light on the photodetector changes. The photodetector converts this change into an ac 
signal. Therefore, the output signal of the photodetector is related to the beam deflection which is 
caused by a local gradient characterizing a particular flow disturbance passing through the laser beam. 

Because the refractive index of air is proportional to the density (to a good approximation), the 
output signal of the photodetector is proportional to the change in the component of the density gradient 
which is perpendicular to the beam and to the knife-edge. 

In equation (l) ,  s is the sensitivity of the beam, a is the Gladstone-Dale constant [2] ,  and i(t) is 
the output signal of the photodetector. Also, the knife-edge was assumed to be perpendicular to the 
x-direction as shown in Figure 2. 

Figure 2, a view taken along the centerline of the laser beam (either beam A or B) from lase1 
toward detector, shows the knife-edge, the eye of the photodiode, and the laser beam cross section. 
The beam is shown in the undisturbed position and in a deflected position described by the beam 
deflection vector, 4 . 

In the following, let A(t) and e(t) represent the magnitude and direction of a(t) ,  
respectively. Further, assume that the eye of the photodiode has a large area of constant sensitivity 
compared to the cross-sectional area of the laser beam, and that no laser light falls outside of this area 
of constant sensitivity. If the intensity across the laser beam is assumed to be constant over the beam 
cross section and that the knife-edge is straight, the relationship between the time histories of the beam 
deflection vector and the photodetector ac output is simplified considerably. 

2 
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Figure 1. A schematic of a laser schlieren system using parallel beams. 
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Figure 2. A schematic of a cross section taken across one beam 
of a laser schlieren system. 
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Because the area of sensitivity of the eye of the photodiode monitoring the fluctuating laser 
light is constant, the component of the beam deflection vector which is parallel to the knife-edge does 
not contribute to the output signal of the photodetector. The component of 4 which is perpendicular 
to the knife-edge will determine the amount of change in light reaching the photodiode. If the beam 
deflection is small compared to the diameter of the laser beam, the output signal, i(t), can be expressed 
conveniently as a function of the component 4 which is perpendicular to the knife-edge: 

where the first group of terms in parentheses on the right-hand side of equation (2 )  is the change in the 
output signal per unit change in A, and is assumed to be a constant, C. 

i(t) = C . Ax(t) (3) 

For this case, the photodetector output is a linear function of the component of 4 which is normal to 
the knife-edge. This result is not unrealistic and can be approximated very well in practice. 

Since 

Ax(t) = A(t) . cos O(t) 

equation ( 3 )  can be expressed as 

i(i) = C . A(t) . cos O(t) 

(4) 

Thus, we see from equation (5) that i(t) is a function of the direction as well as the magnitude of the 
beam deflection vector. 

For the laser schlieren system shown in Figure 1, the signals from the photodetectors monitoring 
the respective beams are 

ia(t) = Ca . Aa(t) . cos Oa(t)  

5 



and 

, .  ... . . 

Assume that the turbulence is two-dimensional; i.e., the time-averaged statistical properties do  
not vary along the beams. Although this assumption will restrict the analysis, it provides a better model 
for the purpose of describing the fundamental concept, the prime purpose here. It will soon become 
evident that relaxing this assumption will not change the fundamental relationship between the shape of 
the correlograms and the angular velocity of the density gradient vector component which is normal to 
the respective beams. 

, 

The cross-correlation of the signals ia(t) with ib(t + T )  is given by [3] 

m 

R(~,T)  = lim - I '  J ia(t) . ib(t + T )  dt . 
T-fm 

Substitute equations (6) and (7) into (8) and assume that the integration time, T, is large enough so 
that 

Figure 3 shows the knife-edge orientation for the cross-correlation of equation (9). This figure also 
shows the beam deflection vector of beam A at time t when a particular disturbance is passing through 
the beam, and the 4 of beam B when the same disturbance is passing through beam B at a later time 
t + 7. When this disturbance passes through beam A, the beam is deflected in a direction ea ,  and by a 

magnitude of A,. This magnitude of the deflection vector is determined by the magnitude of the density 

gradient component normal to the beam characterizing the disturbance. The direction of the deflection 
is caused by the particular orientation of the same density gradient component. If the realistic assump- 
tion is made that the disturbance rotates as it travels downstream, its orientation will not necessarily be 
the same when it passes through beam B as it was when it passed through beam A. This is represented 
in Figure 3 where the beam deflection vector caused by a particular disturbance has rotated during its 
transit from beam A to beam B. It follows that 
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Figure 3. A schematic of a view taken along laser beams of the laser schlieren system shown in Figure 1. 



This equation defines the angle 4 through which the disturbance rotated during transit from beam A 
to  B. Thus, 

$(t + 7) = ea(t) 8b(t + 7) 

Solving equation (1 1) for eb(t t 7) and substituting into equation (9)  gives 

To examine the effect which this angular rotation has upon the cross-correlation function 
R((,T), consider a simplified two-dimensional flow model where it is assumed that the disturbances are 
random and produce statistically stationary signals. The cross-correlation function [equation (1 2)] will 
be studied for two cases: (a) where the disturbances do not rotate and (b) where each disturbance 
rotates through the same angle, $, during transit from beam A to beam B. Case (a) will be discussed 
first. 

Figure 4 shows four knife-edge arrangements where the view is taken along the laser beams 
similar to that of Figure 3. The differences between these four figures is the orientation of the down- 
stream knife-edge. If we assume that the disturbances do not rotate, then 

$(t + 7) = 0 , 

and from equation (1 I), 

The signal from beam A will be 

ia(t) = Ca . Aa(t) . cos Oa(t) 

and is the same for all four knife-edge arrangements. 
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Figure 4. A schematic of four knife-edge arrangements of the laser 

schlieren system shown in Figure 1. 
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The signals from beam B for Figure 4a through 4d are 

respectively. 

When we substitute equation (14) into equations (1 6), (17), (IS), and (19), the cross- 
correlation functions for the respective knife-edge arrangements become 

Rz(6,~) = (y) -; Aa(t) ' Ab(t +T) ' cos ea(t) * sin Oa(t) dt , 
0 

T 
R3({,7) = -( y) J Aa(t) . Ab(t + 7 )  . cos ea(t) . cos ea(t) dt , 

0 

T 
R4(6,7) = - (F) 2 Aa(t) . Ab(t +T) COS Oa(t) 'sin ea(t) dt . (23) 

The cross-correlograms for these arrangements. are shown in Figure 5a, 5b, 5c, and 5d, respectively. An 
example of a cross-correlogram, represented by equation (20), would be similar to that shown in 
Figure 6a. A cross-correlogram similar to that represented by equation (22) i s  shown in Figure 6b. 

For case B, it is assumed that each disturbance rotates through the same angle 4 during 
transit from beam A to B; then, 

I 
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Figure 5 .  Schematic of cross-correlograms corresponding to the 
knife-edge arrangements in Figure 4, respectively. 
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T I M E  D E L A Y  

Figure 6. (a) Typical cross-correlogram for knife-edge arrangement of 
Figure 4(a) [equation (20)] , (b) Typical cross-correlogram for 

knife-edge arrangement of Figure 4(c) [equation (22)] . 
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Expanding equation (12) and making the substitution from equation (24), 

R ( ~ , T )  = (F) Aa(t) . Ab(t + 7) . cos'O,(t) . cos 4 dt 
0 

+ ('e) 7 Aa(t) Ab(t +T) . cos Oa(t) . sin O,(t) * sin @J dt 
0 

Since q5 is not a function of time, cos I$ and sin $J can be taken outside of the integrals on the riglit- 
hand side of equation (25), respectively. 

R ( ~ , T )  = [COS $1 ('+) J-' Aa(t) . Ab(t + 7) . COS' Oa(t) dt 
0 

+ [sin $1 ('e) 7 Aa(t) . Ab(t + 7) . cos Oa(t) . sin Oa(t) dt 
0 

In equation (26), the integrals represent the cross-correlations derived for case A. Substitution of 
equations (20) and (21) into (26) yields 

R(t,7) = [COS 41 R i  ( E T )  + [sin $1 R2 (E,7) 

Equation (27) relates the cross-correlogram of case B to those of case A. Equation (27) shows that 

for q5 = 0 

for $ = rr/2 

for $J = rr 

for @(3/2)rr 

as should be expected. 
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In equation (27), the unknown quantity is the angle, @. A direct measurement of @ for the 
idealized model in case B can be made by combining case A with case B. This procedure is referred to 
here as the method of “forced similarity” and is as follows: 

(1) Compute the cross-correlogram R(E,T) for zero beam separation with the knife-edges as 
shown in Figure 2 (E = 0). Since @ = 0 for E = 0, 

R ( ~ , T )  = R l ( 0 , ~ )  . (32) 

(2) Separate the two beams by moving beam B downstream a known distance from beam A. 
The position and knife-edge angle, Ga, of beam A are not changed (Ga = 0). 

(3) Rotate the downstream knife-edge, B, to the angle, $bm, which produces the same “shape” 

of the cross-correlogram as was computed for zero beam separation. For this simplified flow model, the 
angle, Gbm, corresponding to the maximum “degree of similarity” between the cross-correlograms is 

equal to the angle, @, through which the disturbances rotate during transit from beam A to beam B. 
The “forced similarity” condition is 

where K($,T,$b) is “optimum” when $b = $bm for a particular ‘$. 

(4) The most probable transit time, T ~ ,  of the disturbances is determined by the time delay 

on the cross-correlogram for separated beams corresponding to the similar position at zero time delay on 
the cross-correlogram for zero beam separation. 

(5) The most probable speed of the disturbances is 

‘m (34) 

(6) The most probable angular velocity is 

These models have been used to relate the experimentally observed skewness of cross-correlograms, 
computed from laser schlieren signals, to the rotation of the turbulent structures. 

14 



PRACTICAL APPLICATION OF THE METHOD OF FORCED SIMILARITY 

In the previous section, a method of “forced similarity” was introduced which provides the 
means for measuring the most probable preferred angular velocity of the simplified two-dimensional 
disturbances. As a consequence of the proposed relation between the skewness of the cross-correlogram 
and the rotational motion of the disturbances, the “forced similarity” condition, equation (33), must 
be imposed to determine the most probable transit time, T ~ ,  as well as all other statistical properties 

which are computed from the shape of the cross-correlogram in the neighborhood of T ~ .  Imposing 

this condition analytically involves normalization of the cross-correlogram and optimization of the 
similarity function, K(g,T,J/b). These details will not be discussed here. Rather, we will proceed to the 

practical application. 

Figure 7 shows a schematic of the free jet shear layer of a supersonic axisymmetric air jet. Two 
laser beams are directed through the flow perpendicular to one another and in such a manner that the 
plane formed by the beams is perpendicular to the centerline of the jet. The horizontal beam (beam A) 
passes through the center of the jet. The vertical beam (beam B) passes through the shear layer and 
intersects the horizontal beam as shown in Figure 7. 

In Reference 4, it is theoretically shown that the statistical cross-correlation of the signals from 
two such beams should result in a cross-correlogram representative of the components of the signals 
which are caused by disturbances passing through the localized region about the beam intersection; i.e., 
flow disturbances passing through the beams that are not common to both beams do not contribute 
significantly to the cross-correlogram (the integration time being sufficiently long). In Reference 1, the 
experimental verification of this “cross-beam’’ concept was successfully achieved in a supersonic 
(M = 2.0) turbulent wake of a thin flat plate. 

Referring again to the axisymmetric jet, the “forced similarity” condition may be satisfied for 
retrieving all three components of the most probable preferred angular velocity, <w >, of the dis- 

turbances passing through a localized region of the shear layer. It may be assumed that the mean 
statistical properties of the turbulence are also axisymmetric, and thereby eliminate one component of 
<o >; however, this is not necessary and will not be done. 

The experimental procedure is as follows: 

-P 

-P 

(1) The beams are directed through the turbulence as shown in Figure 7 with zero beam 
intersection (E = 0). The knife-edges are positioned as shown (Qa = 0 and J/,, = 0). 

(2) The cross-correlogram R(O,T) is computed. 

(3) The vertical beam (beam B) is moved downstream a distance as shown in Figure 8, and 
the cross-correlogram R ( ~ , T )  is computed which satisfies the “forced similarity” condition 

15 
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Figure 7. Cross-beam arrangement for axisymmetric jet. 
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Figure 8. Schematic of space-time correlation satisfying the “forced similarity” condition. 



for axisymmetric flows. K(g, 7 ,  Gm, $bm) is determined to be the ‘‘weakness’’ function necessary to 

satisfy equation (36)  in the neighborhood of I - ~ .  Experimentally, this involves rotation of both of the 

knife-edges. When this step is completed, the condition should be satisfied for this particular flow. 

(4) If necessary, the next step would be to rotate the downstream beam in the plane perpen- 
dicular to the centerline of the jet. This is done in increments and step (3) is repeated for each increment 
until all three angles Ga, G,,, and $c have been determined which satisfy the three-dimensional 

similarity condition 

where 9, is the angle of rotation of the vertical beam. 

(5) The most probable transit time of the disturbances is determined by evaluating the 
similarity condition (37) for T = 0: 

Thus, I - ~  is equal to the time delay on the cross-correlogram R(l, 7, $am, $bm, qCm) corresponding 

to the similar position at zero time delay on the cross-correlogram for zero beam separation. 

(6) The components of the most probable preferred angular velocity are 

<a>= - $bm 

‘m 

and the most probable vector is 

18 



(7) The most probable speed of transit is 

Figures 9 and 10 show the first successful cross-beam measurements in the supersonic free 
shear layer of an axisymmetric jet. The nozzle exit Mach number was 2.5, and the expansion was 
optimum. 

Figures 9a and 9b show the positive and negative time delay ranges of the cross-correlogram. 
The beam geometry is shown in Figure 7 (5  = 0). It can be seen that the correlogram is not symmetric 
about the origin (T = 0), but that there is a dominant peak at (T  = 0). This cross-correlogram corresponds 
to R(~ ,T)  in equation (36). 

Figure 10 shows the cross-correlogram for a beam separation of 1 inch ( E  = 1”)  with the knife- 
edges in the same positions as in Figure 9 (9, = 0, % = 0). The fact that there is a considerable 

difference in the shapes of these correlograms satisfies one necessary condition required by the theory 
of “forced similarity.” 

Figure 1 1  shows four cross-correlations computed from signals retrieved with a laser schlieren 
system using parallel beams as previously described. The data3 were retrieved from the supersonic 
(M = 2.0) turbulent boundary layer on the thin plate shown in Figure 12. The beams were separated 
by approximately 1.5 inches in the direction of flow and were approximately 1/8 inch above the surface 
of the plate. These cross-correlograms were computed with the downstream knife-edge orientations 
shown and were the first experimental attempt to relate the shape of the correlogram, in the neighborhood 
of the most probable transit time, T ~ ,  to the orientation of the knife-edges relative to the flow and to 
each other. 

These data show that the relative orientation of the knife-edges to each other does indeed 
influence the shape of the cross-correlogram. Therefore, it is reasonable to consider that the cross- 
correlogram is influenced by a change in the relative orientation of the disturbances to the knife-edges 
as they translate from one to the other. 

CONCLUSIONS 

Based upon the theoretical and experimental results which have been presented, the following 
conclusions are: 

3. These measurements were made in MSFC’s Bisonic Wind Tunnel on June 3, 1969 [ l ]  . 
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Figure 9. Cross-correlogram computed from laser schlieren signals retrieved from 
free shear layer of axisymmetric jet (Me = 2.5), (a) positive time 

delay range, (b) negative time delay range. 
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Figure 10. Cross-correlogram computed for same case as that of Figure 9 
except beams are separated by 1 .O inch as shown in Figure 8 

($a = 0,  $b = 0). 

(1) The relative orientation of the knife-edges to each other controls the shape of the cross- 
correlogram in the neighborhood of the time delay, T ~ ,  corresponding to the most probable transit 

time of disturbances between the laser beams. 

(2) The method of “forced similarity” introduced here provides the means for separating the 
translational and rotational contributions to the shape of the cross-correlogram. However, more expeFi- 
mental results are needed for verification. 

(3) The “forced similarity” condition is based upon the assumption that the shape of the cross- 
correlogram computed with beams separated is “similar” to that computed with zero beam separation 
when the contribution caused by rotation has been eliminated (the effect of decay accepted). 

(4) Because of the rotational influences, significant error can result in the flow properties 
which are computed from the shape of the cross-correlogram unless the influence caused by rotation is 
considered. 

(5) The condition of “forced similarity” may be applied by rotation of either or both beams 
about the axes of a reference coordinate system in combination with rotation of the knife-edges. The 
particular combination used is primarily dependent upon the flow. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, June 29,1970 
976-30-20-00-75 
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Figure 1 1. Cross-correlograms computed for four knife-edge arrangements as shown. 
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Figure 12. Shadowgraph of flow field generated by the thin plate model. 
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